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Supplementary Material for the Granger Causality with PARAFAC Algorithm used in the paper 

“Tensor Analysis and Fusion of Multimodal Brain Images” 

Esin Karahan, Pedro A. Rojas-Lopez, Maria L. Bringas-Vega, Pedro A. Valdes-Hernandez,  Pedro A. 

Valdes-Sosa 

 

This document is prepared for the explanation of the tensor regression with PARAFAC software 

presented in http://www.cneuro.cu/software/tensor and http://neurosignal.boun.edu.tr/software/tensor . 

I. NOTATION 

In its general form an N-Dimensional tensor (or an N order tensor) is represented by calligraphic 

uppercase letters (e.g. 1 2 NI I I× × ×∈ ⋯
ℝX ). For a matrixX , T

X denotes the transpose and for a tensorX ,  
*X  denotes the permutation of its modes. Permutation will be clear in the context. I  is the identity 

matrix, I  is the identity tensor with 1’s on the super-diagonal and 1 is the column vector of 1’s.  

 

Definition: Tensor contraction is a generalization of matrix multiplication for tensors. Consider a tensor 

X  of size 
1 1N MI I J J× × × × ×⋯ ⋯ and Y  of size

1 1M PJ J K K× × × × ×⋯ ⋯ . Multiplication over common 

dimensions 
1 MJ J× ×⋯  will give: 
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Definition: Mode-n unfolding of a tensor is the transformation of the tensor 1 2 ... NI I I× × ×∈X R� to a matrix 

1 1 1... ...

(n)
n n n NI I I I I− +×∈X R� where mode-n fibers are arranged to be columns of the resulting matrix. Tensor 

element 
1 2( , ,..., )Ni i i corresponds to matrix element ( , )ni j , where 
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Definition: Khatri-Rao product is the columnwise Kronecker product . Let I K×∈A R�  and J K×∈B R� , 

Khatri-Rao product A B⊙  defined as follows: 

[ (:,1) (:,1) (:,2) (:,2) (:, ) (:, )]K K= ⊗ ⊗ ⊗A B A B A B A B⊙ ⋯  

 

Definition: Inner product is an operation between two tensors 1 2 NI I I× × ×∈ ⋯
ℝX and 1 2 NI I I× × ×∈ ⋯ℝY that 

share the same order and dimensions yielding a scalar:  
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Definition: PARAFAC decomposition 

Given 1 2 ... NI I I× × ×∈X R� , PARAFAC decomposition is formulated as: 

� �1 2; , , , Nλ= U U U…X                                                                                  (1) 
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where nI R

n

×∈U R  for 1,...,n N=  are the factor matrices or signatures and R is the model order. 

PARAFAC decomposition can be expressed in different ways (Kolda, 2006): 

Expression 1: Elementwise notation 

1 1 1

1

( , , ) ( i , r )... ( i , r )
R

N N N

r

i i
=

… = ∑U UX   

Expression 2: Sum of outer products 

1

1

(:, ) ... (:, )
R

N

r

r r
=

= ∑U U� �X   

Expression 3: Matricized notation 

(n) 1 1 1( .... ... )
T

n N n n+ −= U U U U U⊙ ⊙ ⊙ ⊙ ⊙X  

Factors of the PARAFAC decomposition 1U  to NU  can be estimated by using Alternating Least Squares 

(ALS) algorithm. ALS is an iterative algorithm such that each factor is estimated sequentially by fixing 

the others. 
nU is estimated by: 

� �{ }21 2

ˆ argmin , , , ,
n

n n N= −
U

U U U U… …X  

By using expression 3, this is equivalent to: 

 { }2(n ) 1 1 1
2

ˆ argmin ( .... ... )
n

T

n n N n n+ −= −
U

U U U U U U⊙ ⊙ ⊙ ⊙ ⊙X  

The closed form solution of ˆ
n

U is found as: 

†

(n) 1 1 1
ˆ ( .... ... )
n N n n+ −=U U U U U⊙ ⊙ ⊙ ⊙ ⊙X  

 

II. TENSOR REGRESSION AND DECOMPOSITION 

Given 1 2 ... MJ J J× × ×∈Y R�  and a linear map 1 2 1 2... ...
: N MI I I J J J× × × × × ×→A�R� R� with 

1 1

M N

m n

m n

J I
= =

≤∏ ∏  , we want to 

estimate the tensor 1 2 ... NI I I× × ×∈X R�  satisfying  
1{ , , }Ki i

= • ⋯Y A X�  with K N≤   and its factors are defined as 

� �1 2
, , ,;

N
λ= U U U…X . This formulation guarantees X to be low-rank.  

For the tensor MAR described in the paper, N=3, M=2. Y is the fMRI data sampled from 
CxI voxels of 

the cortical grid at 
TI δ time samples. The lagged data values are collected in the tensor T lag CxI I I× ×∈ℝA and 

connectivity tensor is denoted as lag Cx CxI I I× ×∈ℝX . We will give the estimation of parameters for the 

general case. 

 The objective function for this problem is defined as: 
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We relax the objective function by introducing penalty functions and further we impose certain 

constraints on the factors of the tensor decomposition: 

� �
1
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1 22 2, , ,
1 1

1
minimize ; , , , ( , )

2 2N

N L
CP

N nl nl n

n l

P
α

λ α
= =

− • + − +∑∑
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…

…
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where 
CPα is the penalization variable for X to be a multiway array, ( , )nl nl nP α U is the lth penalty 

function on the factor 
nU with the penalty parameter 

nlα . 

We will use Alternating Direction Method of Multipliers (ADMM) which is preferable to others for large-

scale optimization problems (Boyd, Parikh, Chu, Peleato, & Eckstein, 2010). In this method global problem 

is divided into local ones by using variable splitting and augmented Lagrangian. 

In (3) we introduce a new variable 1 2 ... NI I I× × ×∈Z R�  for variable splitting between first and second term of 

the objective function: 
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The augmented Lagrangian is given as: 
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where 1 2 ... NI I I× × ×∈W R� is the Lagrange multiplier. ADMM algorithm is given as follows: 
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1. ADMM update for X : 

X is estimated by: 

2 2

2 2

1
argmin ,

2 2

ρ
= − • + − + −

X

X Y A X X Z W X Z  
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Since the objective function is differentiable, the derivative with respect to X will be: 

( ) ( )ρ∗∂
= − • − • + − +

∂
L

A Y A X X Z W
X

 

By setting the gradient to zero,X is found as: 

* 1 *( ) ( )ρ ρ−= • + • • + −X A A I A Y Z W  

If the dimensions of *•A A  is smaller than * •A A , the formulation below can be used: 

* * 11 1 1 1
( ) ( ) ( ( ))

ρ ρ ρ ρ
−= − + • • + • − • −X Z W A A A I Y A Z W  

2. ADMM update for Z : 

Z is estimated by: 

� �
2 2

1 2 22
argmin ; , , , ,

2 2

CP
CP N

α ρ
λ= − + − + −U U U…

Z

Z Z X Z W X Z  

Call � �1 2
; , , ,

CP N
λ U U U…  as Q . Since the objective function is differentiable: 

( ) ( )CPα ρ
∂

= − − − −
∂
L

Z Q X Z W
Z

 

Z is found as: 

1
( )

CP

CP

α ρ
α ρ

= + +
+

Z Q X W  

3. ADMM update for 
nU : 

� �
2

1 2 2
1 1

argmin ; , , , ( , )
2n

N L
CP

n CP N nl nl n

n l

P
α

λ α
= =

= − +∑∑
U

U U U U U…Z  

At this step any type of solver for tensor decompositions can be used. 

For a given 
nU several combinations of penalization functions can be used. We now relate to a 

combination containing orthogonality, nonnegativity, smoothness and sparsity penalizations. 

That is: 

2 2

2 12
1

1
( , )

2

s.t. 0

L
T

nl nl n orth n n sm n sp n

l

n

P α α α α
=

= − + +

≥

∑ U U U I LU U

U

 

where 
orthα is the penalization parameter for the orthogonality constraint, 

smα is for the smoothness and 

sp
α is for the sparsity. 
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We use Hierarchical Alternating Least Squares (HALS) algorithm to estimate the factors of the 

PARAFAC decomposition. The HALS algorithm is a modified ALS algorithm in which at each step of 

ALS, only one column of a factor is estimated by fixing the rest of the columns of the factor. Moreover 

we make use of the matricized notation for PARAFAC with 
1 1 1=( .... ... )n N n n+ −G U U U U⊙ ⊙ ⊙ ⊙ ⊙  to 

take the objective function as:  

( )

2

2
1

argmin ( , )
2n

L
TCP

n n n nl nl nn
l

P
α

α
=

= − +∑
U

U U G UZ  

Since at each step of the algorithm we estimate only a column of 
nU , we have: 

2

( )
2(:, ) 1

(:, ) argmin (:, ) (:, ) ( , )
2n

L
TCP

n n n n nl nl n
k l

j j j P
α

α
=

= − +∑
U

U U G UɶZ  

where ( ) ( ) (:, ) (:, )
R

T

n n n n

i j

i i
≠

= −∑U GɶZ Z  

The orthogonality constraint on the nonnegative signatures can be imposed column-wise (Kimura, 

Tanaka, & Kudo, 2014). The reason for this is that for a nonnegative matrix I J×∈X ℝ , orthogonality 

condition 
T

J
=X X I  can be replaced by 2J column-wise coefficients (:, ) (:, ) 1Tj j =X X  and 

(:, ) (:, ) 0
J

T

k j

k j
≠

=∑X X  for 1,2, ,j J= … .  

We can now impose orthogonality conditions as (:, ) (:, ) 0
R

T

n n

i j

i j
≠

=∑U U   for 1,2, ,j R= …  where R is the 

number of components in the PARAFAC decomposition. We assume that the factors are normalized. We 

denote the orthogonality constraint as: ( ) (:, ) 0j T

n n
j =U U  

With this, the factor is estimated by: 

2 2( )

( ) 2 12(:, )

1ˆ (:, ) argmin (:, ) (:, ) (:, ) (:, ) (:, )
2 2n

T j TCP
n n n n orth n n sm n sp n

k

j j j j j j
α

α α α= − + + +
U

U U G U U LU UɶZ  

The gradient is found as: 

{ }( )

( ) (:, ) (:, ) (:, ) (:, ) (:, )
(:, )

T j T

CP n n CP n n n orth n sm n sp

n

j j j j j
j

α α α α α
∂

= − + + + +
∂

G U G G U L LU 1
U

ɶL
Z  (5) 

Due to the scaling on the factors, (5) becomes: 

{ }( )

( )
(:, ) ( ) (:, )

(:, )

T j

CP n n CP sm n orth n sp

n

j j
j

α α α α α
∂

= − + + + +
∂

G I L L U U 1
U

ɶL
Z                 (6) 

By solving (6) and forcibly keeping the nonnegativity, we obtain the update rule under the assumption of 

normalization of ( ) ( ):, :, 1
T

n n
j j =U U  as post-processing: 

( ) ( )1
( )

( )
ˆ (:, ) (:, )T j

n CP sm CP n n orth n sp
j jα α α α α

−

+

 = + − −  
U I L L G U 1ɶZ  
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where [ ]
0

0

a if a
a

else+

≥ 
=  

 
 

In order to set the value of the 
orthα  parameter we can left multiply the (6) by ( )( ) 1

( )j T T

n CP sm
α α

−
+U I L L  

and take advantage that ( ) (:, ) 0k T

n n j =U U we have: 

( )( ) ( )( ) ( )
( )( )

1 1
( ) ( ) ( )

( )

1
( )

(:, )

(:, )

j T T j T T j

CP n CP sm n n orth n CP sm n

j T T
n

sp n CP sm

j

j

α α α α α α

α α α

− −

−

 − + + +∂  
=  

∂  + + 

U I L L G U I L L U

U U I L L

ɶZL
           (7) 

If (7) is solved for 
orthα , we will get: 

( ) ( )
( )

1
( )

( )

1
( ) ( )

(:, )j T T

n CP sm CP n n sp

orth
j T T j

n CP sm n

jα α α α
α

α α

−

−

 + − 
=  

+  

U I L L G 1

U I L L U

ɶZ
 

 

For the case when orthogonality is not required for the factor matrix 
nU , the penalization function will 

be: 

2

2 1
1

1
( , )

2

L

nl nl n sm n sp n

l

P α α α
=

= +∑ U LU U  

nU is estimated by: 

( )

2 2

2 12

1ˆ argmin
2 2n

TCP

n n n sm n sp nn

α
α α= − + +

U

U U G LU UZ      (8) 

Since in (8) 
nU  is multiplied by 

nG from the right and by L from the left, estimation of 
nU is not easy. 

One method is the vectorization of (8) and use Kronecker products which is not favorable since the scale 

of the problem will be high. We prefer to use ADMM to split the quadratic and penalization functions as 

follows: 

 ( )

2 2

2 1, 2

1
minimize

2 2

s. t.       0

n

TCP
n n sm spn

n

α
α α− + +

− =

U V
U G LV V

U V

Z
 

The augmented Lagrangian is given as: 

( )

2 2 2

2 1 2, 2

1
minimize ( , ) ,

2 2 2n

TCP
n n n sm sp n nn

α τ
α α= − + + + − + −

U V
U V U G LV V U V W U VL Z  

where W is the Lagrange multiplier. 
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ADMM update for 
nU : 

nU  is estimated by: 

( )

2 2

22
minimize ( ) ,

2 2n

TCP
n n n n nn

α τ
= − + − + −

U
U U G U V W U VL Z  

The gradient of the objective function is: 

( ) ( )
(:, )

T

CP n CP n n n nn

n
j

α α τ
∂

= − + + − +
∂

G U G G U V W
U

L
Z      (9) 

Then 
nU  is found by setting (9) to zero: 

( )( )( ) 1
ˆ T

n CP n CP n nn
α τ α τ

−
= + − +U G V W G G IZ  

Note that since the dimensions of T

n nG G is R R× , it is easy to find the inverse of the matrix. 

ADMM update for V : 

V  is estimated by: 

2 2

2 2 1

1
minimize ( ) ,

2 2
n n sm sp

τ
α α= − + − + +

V
V U V W U V LV VL             

(10) 

We used proximal gradient ascent for the estimation of theV as described in (Beck & Teboulle, 2009). 

Proximal map of the function ( )P x  is defined as λ λ
 

= − + 
 

2

2

1
prox ( ) argmin  ( )

2P
x

y, x y P x . By 

using the quadratic approximation of  (10), we foundV as: 

( )1ˆ prox ( ) ,
V

spT

P n

V

sm
L L

λ
τ τ α−

 
= + + +

 
U I VL LV V W  

VL is the Lipschitz constant found as (Beck & Teboulle, 2009) : 

( )max eig T

V smL τ α+= I L L  

In our problem we used the proximal operator of L1 norm, 
1

( )=| |P x x which gives the estimation of x as 

follows λ λ
+

⋅prox ( )=sign( ) (| |- )
P
y, x x . 

Finally the Lagrange multiplier W is updated by: 

( )nτ+ −= UW VW   

The algorithm for the problem in (2) is summarized in Algorithm 1. 
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Algorithm 1 ADMM for tensor regression  

ρ ρ

α α α ρ

ρ ρ
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= • + • • + −
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X Z W A
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( 1) * 1 * ( ) ( )

( 1) ( ) ( ) *

: , , ,

: , ,...,

: { , ..., }

    = 1,2, ..., 

   size( ,1) size( ,2)

( ) ( )

  

1 1
( ) (

, , ,
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N

N

i i

k k k

k k
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k

CP
R

k

Inputs

Outputs U U

Initialize  U U

for do

if

else
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ρ ρ

α ρ
α ρ

α α α α

−

+ +

−

• + • − • −

= + +
+

= + −ɶ

A A I Y A Z W

Z Q X W

Z

* 1 ( ) ( )

( 1) ( ) ( 1) ( )

1
(

( )

1 1
) ( ( ))

1
( )

  = 1,2,..., , 

  = 1,2,..., , 

 U

ˆ (:, ) (:, )

k k

k k k k

CP

CP

n

T j

n CP sm CP n n orth n

n N

j R

j j

end if

repeat until convergence

for do

for do

if orthogonal

U I L L G U( )
( ) ( )

( )

( )

( ) ( )

τ

α

α α α α
α

α α

α τ α

α

τ τ

τ

α

+
−

−

−

 −  
 + − =  
 +
 

=

= + − +

= ++ +

+

−

ɶZ

Z

)

1
( )

( )

1
( ) ( )

1

( )

(:, )

max eig

ˆ

1ˆ prox (

n

T

s

sp I

j T T

n CP sm CP n n sp

o

m

T

P n

rth
j T T j

n CP sm n

V

T

n CP n n CP

sm

n n

V

j

L

L

1

U I L L G 1

U I L L U

else

repeat until con

I L L

U

vergence

U G V W G

I

I

V V W L

G

L( )
λ

τ

λ

ρ

+

+ + +

 
 
 
 

= +

=

−

= + −

� �… �� �Q

W W X Z

( 1)

1 2

( 1) ( ) ( 1) ( 1)

) ,

; , , ,

( )

 

( )
V

k

CP N

k k

n

k

sp

k

L
V

W W

end repeat

end if

end for

end for

end repeat

U U U

e

U V

nd for
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