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This document is prepared for the explanation of the tensor regression with PARAFAC software
presented in http://www.cneuro.cu/software/tensor and http://neurosignal.boun.edu.tr/software/tensor .

I. NOTATION

In its general form an N-Dimensional tensor (or an N order tensor) is represented by calligraphic
uppercase letters (e.g. X € R">*/v) For a matrix X, X" denotes the transpose and for a tensor X’ ,

X" denotes the permutation of its modes. Permutation will be clear in the context. I is the identity
matrix, Z is the identity tensor with 1’s on the super-diagonal and 1 is the column vector of 1°s.

Definition: Tensor contraction is a generalization of matrix multiplication for tensors. Consider a tensor
X ofsize [, x---xI,xJ x---xJ, and Y ofsize J x---xJ,, xK, x---x K, . Multiplication over common
dimensions J, x---x.J,, will give:

(X .{jl,"',jM} y)(ip"':i/v:kp"':kp)
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Definition: Mode-n unfolding of a tensor is the transformation of the tensor X € R"*>**/¥ to a matrix

X, e RiI-lmlraIv swhere mode-n fibers are arranged to be columns of the resulting matrix. Tensor

N k-1
element (i, i,,...,i, ) corresponds to matrix element (i, j), where j=1+ Z(ik -1)J, with J, = Hlm .

k=1 m=1
k#n m#n

Definition: Khatri-Rao product is the columnwise Kronecker product . Let A e R”* and Be R’
Khatri-Rao product A © B defined as follows:

AOB=[A(C]D®B(G,1) AG2)®B(:,2) - A(GLK)®B(:,K)]

Definition: Inner product is an operation between two tensors X € R"*>**» and ) e R"*/> /¥ that
share the same order and dimensions yielding a scalar:

iy

Definition: PARAFAC decomposition
Given X e R"">**x PARAFAC decomposition is formulated as:

xX=[4U,U,,...,U,] (1)



where U, € R'”® for n=1,...,N are the factor matrices or signatures and R is the model order.

PARAFAC decomposition can be expressed in different ways (Kolda, 2006):

Expression 1: Elementwise notation
R
X(iy,...oiy) =Y U, (i;,r)..U, (iy,T)
r=1
Expression 2: Sum of outer products
R
X=)U(r)o..oUy(r)
r=1

Expression 3: Matricized notation

X,=U,(U,0..0U,,0U,0..0U)

n+l

Factors of the PARAFAC decomposition U, to U, can be estimated by using Alternating Least Squares

(ALS) algorithm. ALS is an iterative algorithm such that each factor is estimated sequentially by fixing
the others. U, is estimated by:

A

0, :argmin{”)c’—[[Ul,...,U,,,...,UN]]"i}
U/z

By using expression 3, this is equivalent to:

A

0, —argmin{|x,, - U, (U, ©...0U,, 00, 0..0U)'[]

The closed form solution of ﬁ” is found as:

U,=X,U,0..0U,,0U,0..00)

II. TENSOR REGRESSION AND DECOMPOSITION

M N
Given Y e R"/**/v and a linear map A :R">/v 5 R/ wyith HJm < HI,, , we want to
m=1

n=l1

estimate the tensor X € R"">**/v satisfying Y= Ao{il’m’,,K}X with K <N and its factors are defined as

X = [[A;UI,UZ,. . .,UN]] . This formulation guarantees X to be low-rank.

For the tensor MAR described in the paper, N=3, M=2. Y is the fMRI data sampled from /. voxels of

the cortical grid at /,,time samples. The lagged data values are collected in the tensor A e R and

Tgg* Il ¢y

connectivity tensor is denoted as X e R
general case.

. We will give the estimation of parameters for the

The objective function for this problem is defined as:



|
minimize J|Y-Ae X, st |¥-[4U.V,.... U] @

We relax the objective function by introducing penalty functions and further we impose certain
constraints on the factors of the tensor decomposition:

o 1 a
e 31Y - A+ X+ XAV U D RV ®

n=1 [=1

where ¢, is the penalization variable for A" to be a multiway array, P, («,,,U,)is the /th penalty

nl>

function on the factor U, with the penalty parameter «,, .

We will use Alternating Direction Method of Multipliers (ADMM) which is preferable to others for large-
scale optimization problems (Boyd, Parikh, Chu, Peleato, & Eckstein, 2010). In this method global problem
is divided into local ones by using variable splitting and augmented Lagrangian.

x1,

In (3) we introduce a new variable Z e R"
the objective function:

“*Ix for variable splitting between first and second term of

. 1 2« )
minimize ¥~ A ¢ X[} + =22 -[4:0,.0,..... U], +;;P (a,,U @)
s. t. X-2Z2=0

The augmented Lagrangian is given as:

mlnlmlzeC(XZUl,Uz, . N)=%||37—A0X||z +a—;’°||Z—[[/1;Ul,U2, U ]]" +ZZ

nl’
X2.Up n=1 I=1

+§||)c’ —Zl+(w,x-2)

where W e R/~ is the Lagrange multiplier. ADMM algorithm is given as follows:
X = arg;ninC(X,Z",Uf,U’z‘,...,va)
ZH = arg;ninC(X"“,Z,Uf JUS .., UN)

k+1 3 k+1 k+1 k k
U =argmin L(X",27,U,,U;,...,UY})

U,

UfVH — argminc(xkﬂ’Zk+l’Uic+l’U/2c+l’.“’UN)
Uy
Wk+l — Wk +p(Xk+l _Zk+l)
1. ADMM update for X :

X is estimated by:

X —argmin - |y- A+ 2]x -2 +(W.x - 2)
X



Since the objective function is differentiable, the derivative with respect to X will be:

o _

aX__A e(Y-AeX)+p(X-2)+W

By setting the gradient to zero, X is found as:

X=(A"eA+pI) e (A e Y+pZ-W)

If the dimensions of A e A" is smaller than A" e A , the formulation below can be used:
1 1. 1 . 1

X=(Z-—W)+—A o(—Ae A +T) ¢(Y-Ae(Z-—W))
P p p p

2. ADMM update for Z:

Zis estimated by:

cp>

Z = argmin %”z-[[ﬂ U,.U,,....U, ]| +§||X—z||j +(Wx-2)
Z

Call [[/16}, ;ULU,,. .,UN]] as Q. Since the objective function is differentiable:

oL
E_QCP(Z_Q)_/)(X_Z)_W

Z 1s found as:

zZ-=

(@@ +pX+W)

aCP

3. ADMM update for U,:

N L
Un = argumin agp ||Z - [ﬂCP ’Ul :UZ LA ':UN ]]”z + ZZRL[ (anlaUn)
n n=1 I=1

At this step any type of solver for tensor decompositions can be used.

For a given U, several combinations of penalization functions can be used. We now relate to a

combination containing orthogonality, nonnegativity, smoothness and sparsity penalizations.

That is:
L r 2 1 2
S e U = U0 L U
st.U, 20
where «,,,1s the penalization parameter for the orthogonality constraint, ¢, is for the smoothness and

@, is for the sparsity.



We use Hierarchical Alternating Least Squares (HALS) algorithm to estimate the factors of the

PARAFAC decomposition. The HALS algorithm is a modified ALS algorithm in which at each step of
ALS, only one column of a factor is estimated by fixing the rest of the columns of the factor. Moreover
we make use of the matricized notation for PARAFAC with G, =(U, ©...0U,,, 0U, ,0..0U)) to

take the objective function as:

n+l

T
Z(_nn

.«
U, =argmin —<
v, 2

ZP (a,,U

Since at each step of the algorithm we estimate only a column of U, , we have:

L
U,C.)=argmin. S 2 U, NG, GO |+ D B, U)
I=1

U, (k)

where Z, =2, ZU .G, (i)

i#]
The orthogonality constraint on the nonnegative signatures can be imposed column-wise (Kimura,
Tanaka, & Kudo, 2014). The reason for this is that for a nonnegative matrix X € R", orthogonality
condition X"X =1, can be replaced by 2.J column-wise coefficients X(:, /)" X(:, /) =1 and
J
> X)X, /)=0 for j=12,....J.

k#j

R
We can now impose orthogonality conditions as ZUn (:,)'U,(:j)=0 for j=1,2,...,R where R is the
i#j
number of components in the PARAFAC decomposition. We assume that the factors are normalized. We
denote the orthogonality constraint as: UY"U, (:,j) =0

With this, the factor is estimated by:

~ . . . 7|12 ; N1
U,¢.J)=argmin 2|2, ~U, ()G, () || + @, U7, )+ a

U, (2k)

LU, ) + e,

sm

The gradient is found as:

oL {

aU”(:,j): - (n)G G N +aqU, 06,0 ])TG G, ])+0€th(/)+0{ LTLU( N+a, 1} (5)

Due to the scaling on the factors, (5) becomes:

oL (-,

— = G +(al+a,L'L)U +a
U (. ) (n) 2D+ (@ U, (. ))

U +a,1 (6)

orth

By solving (6) and forcibly keeping the nonnegativity, we obtain the update rule under the assumption of

normalization of U, (:,j)T U, (:,/)=1 as post-processing:

U, (. )) =[(aCPI+aSMLTL)_1( Z,G,¢)-a,,U” —aspl)}

+



where [a]+ = {a ffaz 0}

0 else

In order to set the value of the «,,, parameter we can left multiply the (6) by (UE/' T )(aCPI +a, LT L)_1

and take advantage that U”"U, (;, j) = 0 we have:

or | (U ) (agl+a, L) 2,6, +a,, (U )(aql+a,L'L) (U)

_ ™
UGN a, (U9 ) (el +a, L'L)

If (7) is solved for «

orth >

we will get:

a . = U (O‘CPI + asmLTL)_l (OCCPZ~(”)G” ) -a, 1)

orth —

U9 (a0 +a, L'L) UV

For the case when orthogonality is not required for the factor matrix U, , the penalization function will
be:

L
1 2
;F’nl(an/’Uw):Eaﬁ‘m LUn 2 +asp Un 1
U, is estimated by:
U, —argmin 22|z 0,6 +La, LU, +a,|U 8
n _argumln A (n) T VUaM, ) +Eaam nily +aé‘p nli ( )

Since in (8) U, is multiplied by G, from the right and by L from the left, estimation of U, is not easy.

One method is the vectorization of (8) and use Kronecker products which is not favorable since the scale
of the problem will be high. We prefer to use ADMM to split the quadratic and penalization functions as
follows:

mi%{f{}ize Yer z,-U0G, j+%am LV||§ +a, |V,

s.t. U -V=0

The augmented Lagrangian is given as:

minimize £(U,, V) =“—§P z,-UG, z +%am LV|. +a,|V], +%||U” ~V[. +(W,U,-V)

where W is the Lagrange multiplier.



ADMM update for U :

U, is estimated by:

Z

T
(n) - UnGn

L a
minimize £(U, ) = %
U,

2
2 +%||U” ~V[E+(W,U, - V)
The gradient of the objective function is:

oL
——= —a,Z2 G +a,UG'G +7(U - V)+W 9
6U”(:,j) CP=(n)n CP~n>"n n ( n ) ()

Then U, is found by setting (9) to zero:
A T -1
U, =(2er2,G, +7V - W)(20G,'G, + 1)
Note that since the dimensions of G, G, is Rx R, it is easy to find the inverse of the matrix.

ADMM update for V:

V is estimated by:

LV[ +a,

A

o 1
rnlmvrmzeC(V) =%||Un —V||z +<W,Un —V) +Eam
(10)

We used proximal gradient ascent for the estimation of the V as described in (Beck & Teboulle, 2009).
1 2
Proximal map of the function P(z) is defined as prox ,(y,4) = argmin {EHx — y”2 + ﬂP(x)}. By

using the quadratic approximation of (10), we found V as:

V = prox V+L(W+TU —(rl+a LTL)V) 2y
P L n sm ’L

v v
L, is the Lipschitz constant found as (Beck & Teboulle, 2009) :
L, = max eig(rI + amLTL)
In our problem we used the proximal operator of L norm, P(x)=|x| which gives the estimation of z as
follows prox ,(y,A)=sign(z)-(|z-1), .
Finally the Lagrange multiplier W is updated by:
W=W+z(U —V)

The algorithm for the problem in (2) is summarized in Algorithm 1.



Algorithm 1 ADMM for tensor regression

Inputs : Y, A, R,a_ . .., p
Outputs : X,U,..., U,
Initialize : {U,..., U}
for £k = 1,2, ..., do
if size(A 1) > size(A ,2)
X = (A e A+ pI)'e(A oY+ pZH —WH)

else
xH = (z® —lw“”) LA, (iA A +T) e (Y-Ae (2" —lw“”))
P P P P
end if
Zk) - 1+ p (aCPQ<k) + px<k+1) + W(k))
cpP

repeat until convergence
for n = 1,2,....N, do
for j =12,....R, do
if U orthogonal
A -1 ~ .
Un(:7 ]) = |:(aCPI + asmLTL) (aCPZ(n)Gn(:7 ]) - UU) -a 1 )j|

orth ~ n spl,

orth

U (e, X4 o, UL) (0,2, G, ()~ a,1)

U (e, 1+a, UL) UV
else
L, = max eig(z’I + asmLTL)

repeat until convergence

U, =(2,2,6, +1V-W)(a,G G, +I)

A A
V = prox, | V + Li (W+7U, ~(cI+a,ULV), = J
Vv

vV

W=W+7(U -V)

end repeat
end if
end for
end for
end repeat
Q' =[4,;U,,U,,...,U,

W(k+1) — W(k) + p(X(k+1) _ Z(k+1))
end for
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