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This document is prepared for the explanation of the CMTF software presented in
http://www.cneuro.cu/software/tensor and http://neurosignal.boun.edu.tr/software/tensor .

I. NOTATION

X" and X" are the transpose and conjugate (Hermitian) transpose of the matrix X, respectively. X'is
the Moore-Penrose pseudoinverse of X. I, is K xK dimensional identity matrix and 1, is K x1

dimensional column vector of 1’s. Chol denotes Cholesky decomposition.

Definition: Mode-n unfolding of a tensor is the transformation of the tensor X € R"*>**/¥ to a matrix

X, € R"-tnbei-Iv swhere mode-n fibers are arranged to be columns of the resulting matrix. Tensor

N k-1
element (i, i,,...,I, ) corresponds to matrix element (7, j), where j=1+ Z(ik -1)J, with J = Hlm .

k=1 m=1
k#n m#n

Definition: Khatri-Rao product is the columnwise Krocker product . Let A e R”* and Be R”*,
Khatri-Rao product A © B defined as follows:

AOB=[A(CD®B(,1) A(:,2)®B(,2) - A(LK)® B(:,K))]

Definition: PARAFAC decomposition

Given X e R"">**v PARAFAC is formulated as:

X=[4;U,,U0,,...U,] (1)
where U, e R"** for n=1,.., N are the factor matrices or signatures and R is the model order.

PARAFAC decomposition can be expressed in different ways (Kolda, 2006):

Expression 1: Elementwise notation
R . .
X(ise.niy) =Y U (i,,1).. Uy (iy,T)
r=1
Expression 2: Sum of outer products
R
X =) U(r)e..oUyGr)
r=1

Expression 3: Matricized notation

X,=U,(U,0..0U,,0U, 0..0U)



Factors of the PARAFAC decomposition U, to U, can be estimated by using Alternating Least Squares
(ALS) algorithm. ALS is an iterative algorithm such that each factor is estimated sequentially by fixing
the others. U, is estimated by:

fjn = argmin{"X—[[Up---:Un:-“’UN]]"i}
U/z

By using expression 3, this is equivalent to:

fjn = argmin{"X(n) - Un(UN Q Q Un+l Q Un—l Q Q UI)T”z}
U

n

The closed form solution of U, is found as:
U,=X,(U,0..0U,,0U,, 0..0U)

II. PENALIZED CMTF

The time—varying EEG spectrum is organized as tensor S, € R’/ where 1, is the number of
electrodes, I,;is the number of time samples, I,.;is the number of frequency samples. fMRI data matrix
B € R'¢*'" is formed as a matrix over I, voxels on the cortical grid and 1, time samples. Lead field

K € R’#*'e is included into the model to project cortical source density on the sensor space.

The EEG tensor S, is decomposed into source spatial M _, temporal T, and spectral F, signatures,

eeg

and the fMRI data matrix B is decomposed into spatial M , . and temporal T, signatures. EEG and fMRI

Sfmri
data tensors are coupled in the spatial dimension and the spatial signatures are divided into common, M.
and discriminative sigantures, M and My. Then, M, =[M,M¢]Jand M, . =[M,M;]

fmri

Modality specific and common signatures are estimated by:
1 2 1 2
Sl -1k ML T R+ 7B - [Me, My L]

. : 1 1
(M Mg Ty By My Ty = argmin 42 [M, +- 2 LM + 4 M| + A lumg |’

M Mg, Ty, Fy,
Mo s 1 2
s [ M+ 2 2 [LM |
S-t'[Mc:MG ]T[Mc:MG] :I:[Mc:MB]T[Mc:MB] =1, (2)

M. >0, M, >0,M, >0,F, >0

Estimation of Spatial Signatures:

Common spatial signature M., individual spatial signature of EEG M, and individual spatial signature

of fMRI M, are estimated by matricizing the (2) as follows:



SS0 K MeMAE, 0T [+ B MM, 11|

N . 1 1
(M Mg My) = argmin 4, [Mc], +2, LM + 4 M| +o A LM

Mc. Mg, Mg

1
425 My |, A |

S-t-[MC:MG]T[Mc:MG]ZI:[MC:MB]T[MC:MB]ZI:
M.z20, M, 20,M; >0

Assume that the number of common components is R, the number of discriminative components of
EEG is R,, and the number of discriminative components of fMRIis R, . Then the model order of the
PARAFAC for EEG tensoris R, =R.+R,,and for fMRIis R, =R.+R,,.

We use Hierarchical Alternating Least Squares (HALS) algorithm to estimate the spatial factors of the
PARAFAC decomposition. The HALS algorithm is a modified ALS algorithm in which at each step of
ALS, only one column of a factor is estimated by fixing the rest of the columns of the factor.

HALS algorithm fits very well into the coupled factorization since the spatial signature matrix is
divided into common and discriminative atoms in a columnwise manner. Call P =(F, OT, ) and
similarly represent P in two subspaces as follows P =[P.,P.]. It is clear that
P.=(F,(1:R.)OT,(:1:R.)) and P, =(F, (;,R. +1:R,) O T, (;,R- +1:R,)) . And we do the same
formulation for fMRI: Q =[Q, Q] where Q. =T;(;,1:R.) and Q; =T, (:;,R. +1:R;) .

Orthogonality Constraint on the Nonnegative Spatial Signatures

Orthogonality constraint on the nonnegative spatial signatures can be imposed column-wise (Kimura,
Tanaka, & Kudo, 2014). The reason for this is that for a nonnegative matrix X € R”* | orthogonality
condition X"X =1, can be replaced by 2J columnwise coefficients X(:, /)" X(:, /) =1 and

J

> X, k) X(,)=0 for j=1,2,....J.

k#j

For our case, the orthogonality condition is expressed as follows:

MC(:aj)TMC(::j)ZI: j=1:23'--:RC A
MG(:aj)TMG(::j)ZL j=1:23'--:RDV A

Re

D M) M, )=0,j=12,...R. A

k+j

Ryy

Ly = ) M O™ () =0,=12,...,R,, A 3)
k#j

Ryy

> M) M, )=0,/=12,...,R. A

k=1

Rc
> MG Mg (,/)=0,j=12,..,R,,.
k=1

[M, M T [M¢, M ]




M G MG =1, j=12,..,R,
M, G ) MG, /)=1  j=12,..,R,, A

Re
> M) M, /)=0,=12,...R. A
k+j

RDB
Ly = 1D MG M, )=0,j=12...R; A “4)

k#j

[M M, ] [Mc,M,]

RDB

> M) MG, )=0,j=12,...Rc A
k=1

Rc
> MGk MG, 7)=0,/=12,....R .
k=1

(3) and (4) are unified for M,.:

Rpy Rpg

WU) :i MC(:’k)+Z MG(::k)+ZMB(:’k) (5)

k#j
And the orthogonality constraint is written as: W/” M.(/)=0, j=L2,.. R,
First, we will present the estimation of the common spatial signature M.. Estimation of the others will

follow. The objective function for the estimation of the jth column of M. with the orthogonality

constraint can be formulated as Lagrangian as follows:

L’(I'I ) 13 ( ')) — “ST( : K M (‘ j) PC( ’j) HZ 7/ H : MC("j) Q1 (‘3j) HZ
C 1 _] 2

5 Re B Re
where S, ) =8, ~ KD Mc(k)P.(:,k) ~KMgP;" and B=B-> M¢(.,k)Q (k)" —M,Q," .

oy k)
B,(j)is the weighting parameter for the orthogonality constraint on the jth column of M...
Gradient of the objective function is found as follows:

oL | K'S P )+ K KM, ) Pe(o ) PeCo ) = 7BQe( /) + M Qe 1) Qe )
M) {MMC(:, )+ ALLMC, )+ B,()W? }
(6)
Since factors are normalized P.(:, /)" P.(;, /) =1 and Q.(:;, /) Q.(:, /) =1.

Then M.(:, ) is estimated as follows:

M ()= (K"K+ UL+ 1, ) (K8, Pe (/) + 7BQc (/)= A1, = AW | (7)



Nonnegativity is imposed on the factor by thresholding the elements below than a certain value shown by
the function [], .

We set the regularization parameter for orthogonality constraint as described in (Kimura et al., 2014).
Multiplication of (6) by W7 (K"K+ 4,L'L + 71, ) from the left and noting WY"Mc(:, /) =0 , the

regularization parameter £(;)is found as follows:

WK K+ LU L+ 71, ) (K'S, Pe (. )+ 7BQe ()~ A1, )

A= WO (K'K+ 4L L+71, ) WD

(®)

Note that in (7), the size of the matrix to be inverted is /. x 1. , which can be very high in real problems.
So we use the inversion formula in Chapter 3 of (Tarantola, 2005), for the reformulation.

Call (ﬁLTLJrl[C )=R’R and H=(1§QC(:,j)—ﬁ1, —Mwm)
7 ‘ VA

R can be found from Cholesky decomposition. (7) will be:

M (/)= (K'K+yR'R) (K" 8, Pe(:, ) +7H)
=R"'(K'K+y1, )'(K'S,,P.(. /) +R"H)
=R {K"(KK"+1,)(8,

WP ) ~KRTH)+ R‘TH}

where K =KR™
The same matrix manipulation can be used for the computation of orthogonality parameter in (8):

WOTR {KT(KKT+ (S,

LWOTRT (1R (KRR + 71 K)R W
Y

oPcC. /)" ~KRTH)+ R "H|

/Bl(j)z

where Hz(ﬁQC(i,j)—ﬁlzc )
y e

We skip the derivations of the discriminative signatures since formulation is very similar to common one.
We present the final results.

Discriminative signature of EEG is estimated as:

M (. j)= [L‘l (K" (KK +1,) (8, P, (/) —KL‘TH)}l

~ Rpy . Re Rpy
where 8, =8,, ~ KD M ()P (k) —KMP., WY = M. (k) + D M, (k)
k#j k=1 k#j

H=(-5 (j)wm _/13110,) > K=KL".

Regularization parameter for orthogonality constraint is found as:



WL {KT(KKT+115)-'(3T(1)PG(:, hi —KL‘TH)}

A()= WOTLT(I, —K'(RK'+1, ) 'K)L"W")

Discriminative signature of fMRI is estimated as:

M, GA)=[, + AL 0BQ, () - A1, - KW

B Rpp ) Re Rpp
where B=B-) M, (55)Q, (k) ~M Q. , W => M (k) + Y M, (k).
k=1

k#j k#j

Orthogonality regularization parameter is found as:

WU)T(IQ‘. +/16LTL)—1(7/]~3QB(:,]')—/11110.)

A= WO, +2L'L) WY

Estimation of Other Signatures:
Other signatures are estimated from ALS as follows:

T, = ST(Z) (Fy O[M .My ])T
F, = 8T(3) (Ty O[M M, ])T

T, =B (M., M,])".



CMTF Algorithm

Inputs: S;, B, K,L, R, Ry, , R, 7,44, }
Outputs: M., M., T, ,F,,M;, T,
Initialize : {M ., M, T, ,F,,M;, T;}
repeat until convergence

Estimation of Spatial Signatures
A
R =chol(=2L'L +1)
e

P.=F,G1:R)HOT,(:1:R))
P, =(F,(,R-+1:R,)OT,(;,R.+1:R)))
Qc =T (,1: Re)
Qp =T, (:,R. +1:Ry)
for j =1,2, ..., max(R,,R;) do
if j<R,
Estimation of M. :

Re
S =S80, KDY M ()P (L) —K M P

k#j

B=B-Y M (.hQ (k) -M,Q,

k#j
. Re Ror &
W(j) :z MC(:’k)-‘,-z MG (:,k)+z MB(:,k)
k#j k=1 k=1

H:(EQc(ZJ)_%l)

- WOTRMKT (KK +7D) (S,
B = T —— - -
—WUTRTI-K" (KK’ + 1) '"K)R" WY

Y

WP /) ~KRTH) +R’TH}

H:(H_ﬁl(j)w(j))
v

K=KR"

M (/) = [R’l [KT(RR” + 71" (8, P (/) ~KRTH)+ R’TH}l
end if
Estimation of M, :
if (>R.)&(<R,)
Rpy
S0 =S, KDY Mg (L E)P (k) —K MP."

k#j
) Rc Rpy
W(j) = z Mc(:5k) +z MV(:ak)
k=1 k#j
H=(-41)
owor {f(T KK+ 1) (S, P ¢, /) —IN(L’TH)}
P = WL 1 -K" (KK +1) ' K)L "W
H=H-5)W")
K =KL
M) =[ L {RT(RRT+17(S,

WP i) —IN(L’TH)}l

end if



Estimation of M, :
if (>R)&(G<Ry)

RDB

B=B-) M,(.k)Qu(.k) —-M.Q."

k=#j

R( RDB
W ="M (k) + Y My (k)
k=1

WO+ A L'L) (7BQy (/) — A D)
WT @+ 4L L) WY
MB(I,j): |:(I + ﬂ,sLTL)*l (7]~3QB(:sj) ~21-p, (j)W(j)):L
end if

end for

ﬁs(j):

Estimation of Other Signatures
T, =8, (F, O[M M, ])'
Fy =8,4/(T, O[M M, ]
T, =B (M .M, )
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