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This document is prepared for the explanation of the CMTF software presented in 

http://www.cneuro.cu/software/tensor and http://neurosignal.boun.edu.tr/software/tensor . 

I. NOTATION 

TX and HX  are the transpose and conjugate (Hermitian) transpose of the matrix X , respectively. †X is 

the Moore-Penrose pseudoinverse of X . KI  is K K×  dimensional identity matrix and K1  is  1K ×
dimensional column vector of 1’s. Chol denotes Cholesky decomposition. 

Definition: Mode-n unfolding of a tensor is the transformation of the tensor 1 2 ... NI I I× × ×∈X R� to a matrix 

1 1 1... ...

(n)
n n n NI I I I I− +×∈X R� where mode-n fibers are arranged to be columns of the resulting matrix. Tensor 

element 1 2( , ,..., )Ni i i corresponds to matrix element ( , )ni j , where 
1

1 1

1 (i 1)     with   
kN

k k k m

k m
k n m n

j J J I
−

= =
≠ ≠

= + − =∑ ∏ . 

Definition: Khatri-Rao product is the columnwise Krocker product . Let I K×∈A R�  and J K×∈B R� , 

Khatri-Rao product A B⊙  defined as follows: 

[ (:,1) (:,1) (:,2) (:,2) (:, ) (:, )]K K= ⊗ ⊗ ⊗A B A B A B A B⊙ ⋯  

Definition: PARAFAC decomposition 

Given  1 2 ... NI I I× × ×∈X R� , PARAFAC is formulated as: 

� �1 2; , , , Nλ= U U U…X                                                                                  (1) 

where nI R

n

×∈U R  for 1,...,n N=  are the factor matrices or signatures and R is the model order. 

PARAFAC decomposition can be expressed in different ways (Kolda, 2006): 

Expression 1: Elementwise notation 

1 1 1

1

( , , ) (i , r )... ( i , r )
R

N N N

r

i i
=

… =∑U UX   

Expression 2: Sum of outer products 

1

1

(:, ) ... (:, )
R

N

r

r r
=

=∑U U� �X   

Expression 3: Matricized notation 

(n) 1 1 1( .... ... )
T

n N n n+ −= U U U U U⊙ ⊙ ⊙ ⊙ ⊙X   
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Factors of the PARAFAC decomposition 1U  to 
N

U  can be estimated by using Alternating Least Squares 

(ALS) algorithm. ALS is an iterative algorithm such that each factor is estimated sequentially by fixing 

the others. n
U is estimated by: 

� �{ }21 2

ˆ argmin , , , ,
n

n n N= −
U

U U U U… …X  

By using expression 3, this is equivalent to: 

 { }2(n ) 1 1 1
2

ˆ argmin ( .... ... )
n

T

n n N n n+ −= −
U

U U U U U U⊙ ⊙ ⊙ ⊙ ⊙X  

The closed form solution of ˆ
nU is found as: 

†

(n ) 1 1 1
ˆ ( .... ... )n N n n+ −=U U U U U⊙ ⊙ ⊙ ⊙ ⊙X  

II. PENALIZED CMTF 

The time–varying EEG spectrum is organized as tensor E T FI I I

T
δ δ× ×∈ℝS  where 

E
I is the number of 

electrodes, 
T
I δ is the number of time samples, 

F
I δ is the number of frequency samples. fMRI data matrix 

Cx TI I δ×∈B ℝ is formed as a matrix over CxI voxels on the cortical grid and TI δ time samples. Lead field 

E CxI I×∈K ℝ is included into the model to project cortical source density on the sensor space. 

The EEG tensor 
T
S  is decomposed into source spatial

eegM , temporal 
V

T and spectral 
V

F signatures, 

and the fMRI data matrix B  is decomposed into spatial 
fmriM and temporal 

B
T  signatures. EEG and fMRI 

data tensors are coupled in the spatial dimension and the spatial signatures are divided into common, 
C

M  

and discriminative sigantures, 
G

M and 
B

M . Then, [ , ]eeg = C GM M M and [ , ]fmri = C BM M M   

Modality specific and common signatures are estimated by: 

 

� � � �
2 2

2 2

2 2
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2
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[ , ], , [ , ],

2 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , ) argmin
2 2

1

2

s.t.[ , ] [ , ] ,[ , ] [ , ] ,

0, 0

T

T T

γ

λ λ λ λ

λ λ

 − + − 
 
 = + + + + 
 
 
+ +  

= =

≥ ≥

C G V V

B B
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B B

C G C G C B C B
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M LM

M M M M I M M M M I

M M

S

, 0, 0≥ ≥
B V

M F

(2) 

 

 

Estimation of Spatial Signatures: 

Common spatial signature 
C

M , individual spatial signature of EEG 
G

M and individual spatial signature 

of fMRI 
B

M  are estimated by matricizing the (2) as follows: 
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2 2

(1)
2 2

2 2
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, ,
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1 1
[ , ]( ) [ , ]

2 2

1 1ˆ ˆ ˆ( , , ) argmin
2 2

1

2

s.t.[ , ] [ , ] ,[ , ] [ , ] ,

0, 0, 0

T T

T

T T

γ

λ λ λ λ

λ λ

 − + − 
 
 = + + + + 
 
 
+ +  

= =

≥ ≥ ≥

C G B

C G V V C B B

C G B C C G G
M M M

B B

C G C G C B C B
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K M M F T B M M T

M M M M LM M LM

M LM

M M M M I M M M M I

M M M

⊙S

 

Assume that the number of common components is 
C

R , the number of discriminative components of 

EEG is 
DV

R and the number of discriminative components of fMRI is 
DB

R . Then the model order of the 

PARAFAC for EEG tensor is 
V C DV

R R R= + and for fMRI is 
B C DB

R R R= + .  

We use Hierarchical Alternating Least Squares (HALS) algorithm to estimate the spatial factors of the 

PARAFAC decomposition. The HALS algorithm is a modified ALS algorithm in which at each step of 

ALS, only one column of a factor is estimated by fixing the rest of the columns of the factor.   

HALS algorithm fits very well into the coupled factorization since the spatial signature matrix is 

divided into common and discriminative atoms in a columnwise manner. Call ( )=
V V

P F T⊙  and 

similarly represent P  in two subspaces as follows [ , ]=
C G

P P P . It is clear that 

( (:,1: ) (:,1: ))
C C

R R=
C V V

P F T⊙  and ( (:, 1: ) (:, 1: ))
C V C V

R R R R= + +
G V V

P F T⊙ . And we do the same 

formulation for fMRI: [ , ]=
C B

Q Q Q  where (:,1: )
C

R=
C B

Q T  and (:, 1: )
C B

R R= +
B B

Q T . 

Orthogonality Constraint on the Nonnegative Spatial Signatures 

Orthogonality constraint on the nonnegative spatial signatures can be imposed column-wise (Kimura, 

Tanaka, & Kudo, 2014). The reason for this is that for a nonnegative matrix I J×∈X ℝ , orthogonality 

condition T

J
=X X I  can be replaced by 2J columnwise coefficients (:, ) (:, ) 1Tj j =X X  and 

(:, ) (:, ) 0
J

T

k j

k j
≠

=∑X X  for 1,2, ,j J= … .  

For our case, the orthogonality condition is expressed as follows: 

1

(:, ) (:, ) 1, 1,2, ,R

(:, ) (:, ) 1, 1,2, ,R

(:, ) (:, ) 0, 1,2, ,R

[ , ] [ , ] (:, ) (:, ) 0, 1,2, ,R

(:, ) (:, ) 0, 1,2, ,R

(:, ) (:,

C

DV

DV

T

C

T

DV

R
T

C

k j

R
T T

RV DV

k j

R
T

C

k

T

j j j

j j j

k j j

k j j

k j j

k

≠

≠

=

= = ∧

= = ∧

= = ∧

= ⇒ = = ∧

= = ∧

∑

∑

∑

C C

G G

C C

C G C G G G

G C

C G

M M

M M

M M

M M M M I M M

M M

M M

…

…

…

…

…

1

) 0, 1,2, ,R .
CR

DV

k

j j
=















 = =
∑ …

           (3) 
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1

(:, ) (:, ) 1, 1,2, ,R

(:, ) (:, ) 1, 1,2, ,R

(:, ) (:, ) 0, 1,2, ,R

[ , ] [ , ] (:, ) (:, ) 0, 1,2, ,R

(:, ) (:, ) 0, 1,2, ,R

(:, ) (:,

C

DB

DB

T

C

T

DB

R
T

C

k j

R
T T

RB DB

k j

R
T

C

k

T

j j j

j j j

k j j

k j j

k j j

k

≠

≠

=

= = ∧

= = ∧

= = ∧

= ⇒ = = ∧

= = ∧

∑

∑

∑

C C

B B

C C

C B C B B B

B C

C B

M M

M M

M M

M M M M I M M

M M

M M

…

…

…

…

…

1

) 0, 1,2, ,R .
CR

DB

k

j j
=















 = =
∑ …

                             (4) 

(3) and (4) are unified for 
C

M : 

( )

1 1

(:, ) (:, ) (:, )
C DV DBR R R

j

k j k k

k k k
≠ = =

= + +∑ ∑ ∑C G B
W M M M    (5) 

And the orthogonality constraint is written as: ( ) (:, ) 0, 1,2, ,Rj T

C
j j= =

C
W M …   

First, we will present the estimation of the common spatial signature
C

M . Estimation of the others will 

follow. The objective function for the estimation of the jth column of 
C

M  with the orthogonality 

constraint can be formulated as Lagrangian as follows: 

2 2

(1)
22

1

( )2

1 21 1

1 1
(:, ) (:, ) (:, ) (:, )

2 2
( , )

1
(:, ) (:, ) (:, )

2

( )

( )

T T

T

j

j j j j

j

j j j j

γ

λ βλ
β

 − + −  
=  
 + + +
  

C C C C

C

C C C

K M P B M Q

M

M LM W M

ɶ ɶS

L  

where (1) (1) (:, ) (:, )
CR

T T

T T

k j

k k
≠

= − −∑ C C G GK M P K M PɶS S  and (:, ) (:, )
CR

T T

k j

k k
≠

= − −∑ C C B BB B M Q M Qɶ . 

1
( )jβ is the weighting parameter for the orthogonality constraint on the jth column of 

C
M . 

Gradient of the objective function is found as follows: 

(1)

1 2

( )

1

(:, ) (:, ) (:, ) (:, ) (:, ) (:, ) (:, ) (:, )

(:, ) (:, ) (:, )) (

T T T T

T

T j

j j j j j j j j

j j j j

γ γ

λ λ β

 − + − +∂  
=  

∂ + + +  

C C C C C C C C

C C C

K P K KM P P BQ M Q Q

M M L LM W

ɶ ɶSL

(6) 

Since factors are normalized (:, ) (:, ) 1Tj j =
C C

P P  and (:, ) (:, ) 1Tj j =
C C

Q Q . 

Then (:, )j
C

M is estimated as follows: 

2 (1) 1

1 ( )

1
ˆ (:, ) ( ( (:, ) (:, )) () )

Cx Cx

T T T j

I T Ij j j jλ γ γ λ β
+

− = + + + − − C C CM K K L L I K P B WQ 1ɶ ɶS            (7) 
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Nonnegativity is imposed on the factor by thresholding the elements below than a certain value shown by 

the function []+  . 

We set the regularization parameter for orthogonality constraint as described in (Kimura et al., 2014). 

Multiplication of (6) by 
2

( ) 1
)(

Cx

T T

I

Tj λ γ −+ +K K L L IW from the left and noting ( ) (:, ) 0j T j =
C

W M  , the 

regularization parameter ( )jβ is found as follows: 

( ) 1

1 (

2 (1) 1

) ( )

2

1

)
( )

)

( ( (:, ) (:, ) )

(

Cx Cx

Cx

j T T T

I T I

j T T j

I

T

T

j j
j

λ γ λ

λ γ
β

γ−

−

+ + +
=

−

+ +
C C

K K L L I K P BQ 1

K K L LW I

W

W

ɶ ɶS
               (8) 

Note that in (7), the size of the matrix to be inverted is Cx CxI I× , which can be very high in real problems. 

So we use the inversion formula in Chapter 3 of (Tarantola, 2005), for the reformulation. 

Call 2( )
Cx

T

I

Tλ
γ

+ =L L I R R  and ( )1 1( (:
(

),
)

)
Cx

j

I

j
j

λ β
γ γ

= − −CH BQ 1 Wɶ  

R can be found from Cholesky decomposition. (7) will be: 

{ }

(1)

1

1

(1)

1

(1)

1

1

ˆ (:, ) ( ( (:, ) )

( ( (:, ) )

( ( (:, )

)

)

) )

Cx

E

T T T T

T

T T T T

I T

T T T T T

I T

j j

j

j

γ

γ

γ

γ

γ

− −

− − −

−

−

−

= + +

= + +

= + − +

C C

C

C

M K K R R K P H

R K K I K P R H

R K KK I P KR H R H

ɶ

ɶɶ ɶ ɶ

ɶɶ ɶ ɶ ɶ

S

S

S

 

where 1−=K KRɶ   

The same matrix manipulation can be used for the computation of orthogonality parameter in (8): 

{ }1

(1)

( ) 1

1
( ) 1 1 ( )

)
(

( ( (:
)

1
) )

, ) )

( (

j T T T T T

T

j T T TT j

T j
j

γ

γ
β

γ

−

−

−

−

− −

−

+ −

− +
=

+
C

R K KK I P KR H R H

R I K KK I K

W

W R W

ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

S
 

where 1( )( :, )
CxIj

λ
γ

= −CH BQ 1ɶ  

We skip the derivations of the discriminative signatures since formulation is very similar to common one. 

We present the final results. 

Discriminative signature of EEG is estimated as: 

{ }1

(1)

1ˆ (:, ) ( ( ( ,) : ) )
E

T T T T

I T
j j−− −

+
 = + − G G

M L K KK I P KL Hɶɶ ɶ ɶ ɶS  

where 
(1) (1)

(:, ) (:, )
DVR

T T

T T

k j

k k
≠

= − −∑ G G C C
K M P K M PɶS S , ( )

1

(:, ) (:, )
C DVR R

j

k k j

k k
= ≠

= +∑ ∑C V
W M M , 

( )

2 3 )( ( )
Cx

j

Ijβ λ= − −H 1W  , 1−=K KLɶ . 

Regularization parameter for orthogonality constraint is found as: 
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{ }( ) 1

2 ( ) 1

1

(1)

)1 (

( ( (:, ) )

( (

)
( )

) )

E

Cx E

Tj T T T T

I T

j T T j

I

T

I

T

j
jβ

−

−

− −

− −

=
+ −

− +
G

W

W

L K KK I P KL H

L WL I K KK I K

ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

S
  

Discriminative signature of fMRI is estimated as: 

6 35

1 ( )ˆ (:, ) ( ( (:, )( )))
Cx Cx

T j

I I
j j jλ γ βλ−

+
 = + − − B B

M BQ 1 WI L L ɶ   

where (:, ) (:, )
DBR

T T

k j

k k
≠

= − −∑ B B C C
B B M Q M Qɶ , ( )

1

(:, ) (:, )
C DBR R

j

k k j

k k
= ≠

= +∑ ∑C B
W M M . 

Orthogonality regularization parameter is found as: 

( ) 1

3 (

6 1

) ( )

6

1

( ( (:,) )
)

)(
(

)
Cx Cx

Cx

j T

I I

j

I

T T

T

j

j
j

λ γ λ
β

λ

−

−
=

+ −

+
BW I L L BQ 1

IW WL L

ɶ
. 

 

Estimation of Other Signatures: 

Other signatures are estimated from ALS as follows: 

†

(2) ( [ , ])T=V V C VT F M M⊙S  

†

(3) ( [ , ])T=V V C VF T M M⊙S  

†([ , ])T=
B C B

T B M M . 
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( ( (:, ) )
 

)

)
( )

1
) )

(

 

( (

  (
)

C

C DV DB

R

T T

k j

R R R
j

k j k k

j T T T T T

T

j T T j

T

j

T T

k

k k k

j

j
j

j

λ
γ

β

γ

γ

β
γ

γ

≠

≠ = =

− −

−−

−

−

−

=

−

= + +

= −

+ − +

− +

= −

∑

∑ ∑ ∑

B B

C G B

C

C

M Q

W M M M

H BQ 1

R K KK I P KR H R H

R I K

W

W RKK I K

H

W

WH

ɶ

ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

S

{ }

1

1

(1

1

)

(1) (1)

( )

1

  

ˆ  (:, ) ( ( (:, ) )

  

  Estimation of :

   ( )& ( )

  (:, ) (:, )

  (:, ) (:, )

 

)

)

 

DV

C DV

T T T T T

T

C V

R

T T

T T

k j

R R
j

k k j

j j

j R j R

k k

k k

γ

−

− − −

+

≠

−

= ≠

=

 = + − + 

> <

= − −

= +

=

∑

∑ ∑

C C

G

G G C C

C V

K KR

M R K KK I P KR H R H

nd i

M

i

K M P K M P

W M M

H

ɶ

ɶɶ ɶ ɶ ɶ

ɶ

e f

f

S

S S

{ }

{ }

3

( ) 1

2 ( ) 1 ( )

( )

1

(1)

1

1

1

(

2

)

1

1

(

( ( (:, ) )
  

( (

)

)
( )

) )

( ) )  (

  

ˆ  (:, ) ( ( (:, )) )

  

T

T T

j T T T T

T

j T T j

j

T T T T

T

j
j

j

j j

λ

β

β

− −

−

−

−−−

−

+

−

−

−

+ −

− +

= −

=

 = + − 

=



G

G G

1

L K KK I P KL H

L I K KK I K

H H

K KL

M L K KK I P KL H

end i

W

W L W

W

ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

ɶɶ ɶ ɶ ɶ

f

S

S

 



8 

 

{ }( ) 1

3 ( )

( )

1

1 ( )

6

1

5

6

6

  Estimation of :

   ( )& ( )

  (:, ) (:, )

  (:, ) (:, )

( ( (:, ) )
  

(

ˆ  (:, ) ( ( (:

)
( )

)) ,

)

DB

C DB

C B

R
T T

k j

R R

j

k k j

j T

j T j

T

T

T

j R j R

k k

k k

j
j

j j

λ γ λ
β

λ

λ γ

−

≠

=

−

≠

−

> <

= − −

= +

+ −

+

= +

=

∑

∑ ∑

B

B B C C

C B

B

B B

M

i

B B M Q M Q

W M M

I L L BQ 1

I L L

M I L L B

W

Q

W

W

ɶ

ɶ

ɶ

f

5

†

(2)

†

(

)

3

3)

(

†

)

      

  

  Estimation of Other Signatures

  ( [ , ])

( )

  ( [ , ])

  ([ , ])

j

T

T

T

jλ β
+

 − − 

=

=

=

V V C V

V V C V

B C B

1

end i

T F M M

F T M

B M

W

M

T M

⊙

⊙

f

end for

S

S

  

 

References 

Kimura, K., Tanaka, Y., & Kudo, M. (2014). A Fast Hierarchical Alternating Least Squares Algorithm for 

Orthogonal Nonnegative Matrix Factorization. In JMLR: Workshop and Conference Proceedings 

(pp. 129–141). 

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions. SAND2006-2081. 

Albuquerque, NM, Livermore, CA. Retrieved from 

http://www.osti.gov/bridge/product.biblio.jsp?osti_id=923081 

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM. 

SIAM. doi:http://dx.doi.org/10.1137/1.9780898717921 

 


